organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,10,12-Trimethyl-12*H*-5,7-dioxa-6-thiadibenzo[*a*,*d*]cyclooctene 6-oxide

Su-Lan Dong, Bing Xu, Zhi-Qiang Feng and Jin-Tang Wang*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China Correspondence e-mail: wit@njut.edu.cn

Received 23 April 2007; accepted 15 May 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.010 Å; R factor = 0.054; wR factor = 0.116; data-to-parameter ratio = 8.0.

In the two independent molecules of the title compound, $C_{16}H_{16}O_3S$, the dihedral angles between the benzene rings are 79.06 (2) and 78.46 (2)°. The SO_2C_5 rings are not planar and have boat–chair conformations.

Related literature

For general background, see: Pastor *et al.* (1983); Allen *et al.* (1987); Cremer & Pople (1975).

Experimental

Crystal data

 $C_{16}H_{16}O_{3}S$ $M_r = 288.36$ Orthorhombic, $Pca2_1$ a = 14.122 (3) Å

b = 8.0880 (16) Å c = 25.343 (5) Å $V = 2894.6 (10) \text{ Å}^3$ Z = 8 Mo $K\alpha$ radiation $\mu = 0.23 \text{ mm}^{-1}$

Data collection

Enraf-Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.915, T_{\max} = 0.958$
3213 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.116$ S = 1.002890 reflections 361 parameters 202 restraints T = 298 (2) K $0.30 \times 0.20 \times 0.10$ mm

2890 independent reflections 1444 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ 3 standard reflections every 200 reflections intensity decay: none

H-atom parameters constrained $\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.14 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 2708 Friedel pairs Flack parameter: -0.06 (17)

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

The authors thank the Analysis Centre of Nanjing University for carrying out the X-ray crystallographic analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2239).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Enraf–Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Pastor, S. D., Spivack, J. D., Steinhuebel, L. P. & Matzura, C. (1983). *Phosphorus Sulfur*, 15, 253–256.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o2992 [doi:10.1107/S1600536807023859]

2,10,12-Trimethyl-12H-5,7-dioxa-6-thiadibenzo[a,d]cyclooctene 6-oxide

S.-L. Dong, B. Xu, Z.-Q. Feng and J.-T. Wang

Comment

In a research for novel antioxidants, a series of medium-ring heterocycles derived from sterically hindered phenols has been prepared and investigated (Pastor *et al.*, 1983). We herein report the crystal structure of the title compound, (I).

The asymmetric unit of (I) contains two independent molecules, essentially in the same geometry (Fig. 1). The bond lengths and angles (Table 1) are within normal ranges (Allen *et al.*, 1987).

Rings A(C2—C7), B(C9—C14), D(C18—C23) and E(C25—C30) are, of course, planar and the dihedral angles between them are A/B = 79.06 (2)° and D/E=78.46 (2)°. Rings C (S1/O2/O3/C4/C5/C12/C13/C15) and F (S2/O5/O6/C21/C22/C27/C28/C31) are not planar, having total puckering amplitudes, Q_T , of 1.057 (3) and 1.037 (3) Å, respectively, and boat-chair conformations (Cremer & Pople, 1975).

Experimental

2,2'-ethylidenebis(4-methylPhenol)(1.21 g, 5 mmol) and triethylamine (11 mmol, 1.52 ml) and methylene chloride(AR) (100 ml) were added into the four-neck round-bottom flask fitted with a mechanical stirrer, dropping funnel, thermometer, and reflux condenser. The system was put in an ice-water bath and stirred for 30 min. and then thionyl chloride (5 mmol, 0.36 ml) which was dissolved in methylene chloride(AR) (50 ml) was added and stirred. The reaction was kept at 273 K in an ice-water bath for 24 h. The mixture was washed with hydrogen chloride solution (5%, 100 ml) and saturated sodium hydrogen carbonate (7.4%, 100 ml) and distilled water (200 ml). The solvent was distilled under reduced pressure. The residue was exsiccated in a desiccator. The product was purified by repeated crystallization. Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of isopropyl alcohol(AR) (10 ml) (yield; 1.04 g, 72%, m.p. 401 K).

Refinement

H atoms were positioned geometrically, with C—H = 0.93, 0.98 and 0.96 Å for aromatic, methine and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 15% probability level.

2,10,12-Trimethyl-12H-5,7-dioxa-6-thiadibenzo[a,d]cyclooctene 6-oxide

 $D_{\rm x} = 1.323 {\rm Mg m}^{-3}$

Melting point: 401 K Mo *K*α radiation

Cell parameters from 25 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\mu = 0.23 \text{ mm}^{-1}$

T = 298 (2) K

Block, colorless

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

 $\theta = 10 - 13^{\circ}$

Crystal data

C₁₆H₁₆O₃S $M_r = 288.36$ Orthorhombic, *Pca*2₁ Hall symbol: P 2c -2ac a = 14.122 (3) Å b = 8.0880 (16) Å c = 25.343 (5) Å V = 2894.6 (10) Å³ Z = 8 $F_{000} = 1216$

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.021$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 26.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.6^{\circ}$
T = 298(2) K	$h = 0 \rightarrow 17$
$\omega/2\theta$ scans	$k = 0 \rightarrow 9$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -31 \rightarrow 0$
$T_{\min} = 0.915, T_{\max} = 0.958$	3 standard reflections
3213 measured reflections	every 200 reflections
2890 independent reflections	intensity decay: none
1444 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.054$	$w = 1/[\sigma^2(F_o^2) + (0.040P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.116$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.00	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
2890 reflections	$\Delta \rho_{min} = -0.14 \text{ e } \text{\AA}^{-3}$
361 parameters	Extinction correction: none
202 restraints	Absolute structure: Flack (1983), 208 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.06 (17)
Consultant start site lossification differences Founier man	

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	Uiso*/Ueq
S1	0.21883 (16)	0.7088 (3)	0.74303 (10)	0.0973 (7)
01	0.1300 (4)	0.7391 (6)	0.7223 (2)	0.1098 (19)
O2	0.2261 (3)	0.8052 (6)	0.7991 (2)	0.0862 (16)
O3	0.2965 (3)	0.8038 (6)	0.7086 (2)	0.0833 (15)
C1	0.0108 (6)	1.3898 (10)	0.8340 (3)	0.116 (3)
H1B	-0.0482	1.3606	0.8503	0.175*
H1C	-0.0013	1.4450	0.8011	0.175*
H1D	0.0456	1.4622	0.8570	0.175*
C2	0.0693 (5)	1.2320 (9)	0.8237 (3)	0.0788 (19)
C3	0.1592 (4)	1.2418 (8)	0.8007 (3)	0.0655 (18)
H3A	0.1826	1.3447	0.7906	0.079*
C4	0.2138 (5)	1.1037 (9)	0.7925 (3)	0.0617 (18)
C5	0.1728 (5)	0.9516 (10)	0.8060 (3)	0.0694 (19)
C6	0.0842 (5)	0.9431 (10)	0.8286 (3)	0.083 (2)
H6A	0.0590	0.8416	0.8385	0.099*
C7	0.0340 (5)	1.0837 (10)	0.8362 (3)	0.084 (2)
H7A	-0.0266	1.0770	0.8505	0.101*
C8	0.2456 (6)	1.3871 (9)	0.5856 (3)	0.102 (2)
H8A	0.2534	1.4839	0.6071	0.152*
H8B	0.1839	1.3883	0.5697	0.152*
H8C	0.2931	1.3861	0.5584	0.152*
C9	0.2561 (4)	1.2314 (8)	0.6201 (3)	0.0676 (16)
C10	0.2452 (5)	1.0780 (9)	0.5978 (3)	0.0739 (19)
H10A	0.2296	1.0695	0.5622	0.089*
C11	0.2570 (5)	0.9372 (9)	0.6271 (3)	0.0762 (18)
H11A	0.2511	0.8337	0.6115	0.091*
C12	0.2775 (4)	0.9505 (9)	0.6798 (3)	0.0689 (18)
C13	0.2884 (4)	1.1028 (9)	0.7053 (3)	0.0580 (17)
C14	0.2783 (4)	1.2404 (8)	0.6728 (3)	0.0675 (18)
H14A	0.2871	1.3445	0.6876	0.081*
C15	0.3078 (4)	1.1142 (9)	0.7630 (3)	0.0660 (19)
H15A	0.3439	1.0152	0.7725	0.079*
C16	0.3669 (4)	1.2611 (7)	0.7795 (3)	0.082 (2)

H16A	0.4262	1.2589	0.7610	0.122*
H16B	0.3783	1.2563	0.8168	0.122*
H16C	0.3337	1.3613	0.7711	0.122*
S2	0.04866 (15)	0.7149 (3)	0.51953 (10)	0.0912 (6)
04	0.1369 (4)	0.7467 (6)	0.5400 (2)	0.1101 (19)
05	-0.0329 (3)	0.8073 (6)	0.5539 (2)	0.0810 (15)
O6	0.0424 (3)	0.8172 (6)	0.4638 (2)	0.0813 (16)
C17	0.2390 (6)	1.4193 (10)	0.4275 (3)	0.109 (3)
H17A	0.2000	1.5103	0.4385	0.163*
H17B	0.2535	1.4303	0.3907	0.163*
H17C	0.2966	1.4192	0.4476	0.163*
C18	0.1868 (5)	1.2598 (8)	0.4366 (3)	0.0731 (18)
C19	0.2286 (5)	1.1054 (10)	0.4249 (3)	0.080 (2)
H19A	0.2899	1.1010	0.4115	0.096*
C20	0.1795 (6)	0.9635 (11)	0.4330 (3)	0.081 (2)
H20A	0.2053	0.8631	0.4223	0.097*
C21	0.0904 (5)	0.9661 (9)	0.4573 (3)	0.0665 (18)
C22	0.0483 (5)	1.1173 (9)	0.4706 (3)	0.0664 (19)
C23	0.0994 (5)	1.2595 (8)	0.4597 (3)	0.0716 (18)
H23A	0.0725	1.3607	0.4685	0.086*
C24	0.0153 (5)	1.3952 (9)	0.6739 (3)	0.093 (2)
H24A	0.0061	1.4887	0.6511	0.140*
H24B	0.0772	1.4006	0.6894	0.140*
H24C	-0.0317	1.3965	0.7013	0.140*
C25	0.0060 (4)	1.2366 (9)	0.6420 (3)	0.0734 (18)
C26	-0.0158 (4)	1.2464 (7)	0.5889 (3)	0.0636 (17)
H26A	-0.0231	1.3501	0.5736	0.076*
C27	-0.0273 (4)	1.1081 (10)	0.5581 (3)	0.0679 (19)
C28	-0.0154 (4)	0.9546 (9)	0.5820 (3)	0.0642 (17)
C29	0.0086 (5)	0.9411 (10)	0.6343 (3)	0.0750 (19)
H29A	0.0189	0.8378	0.6493	0.090*
C30	0.0170 (4)	1.0803 (10)	0.6639 (3)	0.0755 (19)
H30A	0.0305	1.0707	0.6997	0.091*
C31	-0.0445 (4)	1.1191 (8)	0.4987 (3)	0.0640 (18)
H31A	-0.0772	1.0169	0.4886	0.077*
C32	-0.1105 (4)	1.2619 (8)	0.4832 (3)	0.083 (2)
H32A	-0.1209	1.2601	0.4458	0.124*
H32B	-0.0820	1.3652	0.4930	0.124*
H32C	-0.1700	1.2498	0.5012	0.124*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0971 (16)	0.0757 (12)	0.119 (2)	-0.0127 (12)	0.0042 (14)	-0.0001 (15)
01	0.127 (5)	0.085 (4)	0.118 (4)	-0.020 (3)	-0.003 (4)	-0.007 (3)
O2	0.108 (4)	0.070 (3)	0.080 (4)	0.003 (3)	0.000 (3)	0.015 (3)
O3	0.072 (3)	0.077 (3)	0.101 (4)	0.010 (3)	0.005 (3)	0.007 (3)
C1	0.108 (6)	0.130 (7)	0.111 (7)	0.025 (6)	0.030 (6)	0.014 (6)

C2	0.074 (4)	0.089 (4)	0.073 (4)	0.009 (4)	-0.011 (3)	-0.001 (4)
C3	0.072 (4)	0.064 (4)	0.060 (4)	-0.007 (3)	0.007 (3)	0.002 (3)
C4	0.057 (4)	0.068 (4)	0.061 (4)	0.001 (3)	-0.017 (3)	0.005 (4)
C5	0.072 (4)	0.075 (4)	0.061 (5)	-0.010 (4)	-0.001 (3)	0.014 (4)
C6	0.080 (4)	0.084 (4)	0.084 (5)	-0.015 (4)	0.004 (4)	-0.002 (4)
C7	0.065 (4)	0.107 (5)	0.081 (5)	-0.005 (4)	0.002 (4)	0.000 (5)
C8	0.098 (5)	0.105 (5)	0.101 (5)	0.014 (5)	0.007 (5)	0.012 (4)
C9	0.054 (3)	0.079 (4)	0.071 (4)	-0.003 (3)	0.002 (3)	0.013 (3)
C10	0.058 (4)	0.088 (4)	0.075 (4)	-0.004 (4)	0.009 (4)	-0.008 (4)
C11	0.061 (4)	0.077 (4)	0.091 (4)	-0.006 (4)	0.012 (4)	-0.014 (4)
C12	0.051 (4)	0.059 (3)	0.096 (5)	0.002 (3)	0.002 (4)	-0.008 (4)
C13	0.044 (3)	0.068 (4)	0.062 (4)	-0.001 (3)	0.005 (3)	0.003 (3)
C14	0.055 (4)	0.068 (4)	0.079 (4)	-0.007 (3)	0.002 (3)	0.001 (3)
C15	0.039 (3)	0.070 (4)	0.090 (5)	0.000 (3)	-0.008 (3)	0.012 (4)
C16	0.066 (4)	0.074 (5)	0.105 (6)	-0.007 (4)	-0.015 (4)	-0.005 (4)
S2	0.0892 (15)	0.0773 (12)	0.1071 (16)	0.0089 (12)	0.0064 (14)	0.0016 (14)
O4	0.116 (5)	0.089 (4)	0.126 (5)	0.022 (3)	-0.005 (4)	-0.009 (3)
05	0.064 (3)	0.068 (3)	0.110 (4)	-0.007 (3)	0.009 (3)	-0.005 (3)
O6	0.073 (3)	0.072 (3)	0.099 (4)	0.006 (3)	-0.016 (3)	-0.016 (3)
C17	0.105 (6)	0.116 (6)	0.105 (6)	-0.050 (5)	0.003 (5)	0.004 (5)
C18	0.079 (4)	0.083 (4)	0.058 (4)	-0.009 (4)	0.012 (3)	-0.010 (3)
C19	0.074 (4)	0.103 (5)	0.064 (4)	0.009 (4)	0.021 (4)	0.010 (4)
C20	0.085 (4)	0.089 (4)	0.069 (5)	0.023 (4)	0.004 (4)	-0.001 (4)
C21	0.067 (4)	0.069 (4)	0.064 (4)	-0.004 (3)	-0.014 (3)	-0.011 (4)
C22	0.057 (4)	0.069 (4)	0.073 (5)	0.000 (3)	0.000 (3)	-0.011 (4)
C23	0.067 (4)	0.071 (4)	0.077 (4)	-0.004 (3)	0.002 (3)	-0.006 (4)
C24	0.086 (5)	0.111 (6)	0.083 (5)	-0.002 (5)	0.002 (4)	-0.035 (5)
C25	0.054 (4)	0.088 (4)	0.078 (4)	-0.010 (4)	0.005 (3)	0.000 (4)
C26	0.060 (4)	0.049 (3)	0.082 (4)	-0.005 (3)	0.001 (3)	0.004 (3)
C27	0.044 (3)	0.080 (4)	0.080 (5)	0.001 (3)	-0.005 (3)	-0.004 (4)
C28	0.050 (3)	0.063 (4)	0.079 (4)	-0.003 (3)	0.010 (3)	-0.005 (4)
C29	0.060 (4)	0.086 (4)	0.079 (4)	-0.003 (4)	0.004 (4)	0.007 (4)
C30	0.054 (4)	0.099 (5)	0.073 (4)	0.000 (4)	-0.003 (3)	0.006 (4)
C31	0.057 (4)	0.048 (4)	0.087 (5)	0.000 (3)	-0.013 (4)	-0.006(3)
C32	0.053 (4)	0.087 (5)	0.108 (6)	0.009 (4)	-0.025 (4)	-0.005 (4)
Geometric para	umeters (Å, °)					
81-01		1.381 (5)	S2	74	1.31	75 (5)

51-01	1.561 (5)	52-04	1.575 (5)
S1—O3	1.599 (5)	S2—O5	1.626 (5)
S1—O2	1.625 (6)	S2—O6	1.639 (6)
O2—C5	1.414 (8)	O5—C28	1.410 (8)
O3—C12	1.418 (9)	O6—C21	1.391 (8)
C1—C2	1.542 (9)	C17—C18	1.503 (9)
C1—H1B	0.9600	C17—H17A	0.9600
C1—H1C	0.9600	C17—H17B	0.9600
C1—H1D	0.9600	C17—H17C	0.9600
С2—С7	1.337 (9)	C18—C23	1.366 (9)
C2—C3	1.400 (9)	C18—C19	1.413 (9)

C3—C4	1.374 (8)	C19—C20	1.357 (10)
С3—НЗА	0.9300	C19—H19A	0.9300
C4—C5	1.403 (10)	C20—C21	1.401 (10)
C4—C15	1.525 (8)	C20—H20A	0.9300
C5—C6	1.377 (10)	C21—C22	1.401 (9)
C6—C7	1.353 (10)	C22—C23	1.385 (9)
C6—H6A	0.9300	C22—C31	1.491 (9)
С7—Н7А	0.9300	C23—H23A	0.9300
C8—C9	1.541 (9)	C24—C25	1.522 (9)
C8—H8A	0.9600	C24—H24A	0.9600
C8—H8B	0.9600	C24—H24B	0.9600
C8—H8C	0.9600	C24—H24C	0.9600
C9—C10	1.373 (8)	C25—C26	1.383 (9)
C9—C14	1.374 (9)	C25—C30	1.389 (9)
C10-C11	1.371 (9)	C26—C27	1.374 (9)
C10—H10A	0.9300	C26—H26A	0.9300
C11—C12	1.370 (10)	C27—C28	1.392 (10)
C11—H11A	0.9300	C27—C31	1.528 (10)
C12—C13	1.399 (10)	C28—C29	1.371 (9)
C13—C14	1.392 (9)	C29—C30	1.358 (9)
C13—C15	1.491 (10)	С29—Н29А	0.9300
C14—H14A	0.9300	C30—H30A	0.9300
C15—C16	1.511 (8)	C31—C32	1.536 (8)
C15—H15A	0.9800	C31—H31A	0.9800
C16—H16A	0.9600	С32—Н32А	0.9600
С16—Н16В	0.9600	С32—Н32В	0.9600
C16—H16C	0.9600	C32—H32C	0.9600
O1—S1—O3	109.3 (3)	04—82—05	110.7 (3)
O1—S1—O2	107.7 (3)	O4—S2—O6	106.2 (3)
O3—S1—O2	101.8 (3)	O5—S2—O6	101.0 (3)
C5—O2—S1	118.4 (5)	C28—O5—S2	122.3 (4)
C12—O3—S1	123.6 (4)	C21—O6—S2	120.8 (5)
C2—C1—H1B	109.5	C18—C17—H17A	109.5
C2—C1—H1C	109.5	C18—C17—H17B	109.5
H1B—C1—H1C	109.5	H17A—C17—H17B	109.5
C2—C1—H1D	109.5	C18—C17—H17C	109.5
H1B—C1—H1D	109.5	H17A—C17—H17C	109.5
H1C—C1—H1D	109.5	H17B—C17—H17C	109.5
C7—C2—C3	119.2 (7)	C23—C18—C19	117.8 (6)
C7—C2—C1	120.2 (7)	C23—C18—C17	120.6 (7)
C3—C2—C1	120.6 (7)	C19—C18—C17	121.5 (7)
C4—C3—C2	121.8 (6)	C20-C19-C18	120.1 (7)
С4—С3—НЗА	119.1	С20—С19—Н19А	119.9
С2—С3—НЗА	119.1	C18—C19—H19A	119.9
C3—C4—C5	116.4 (7)	C19—C20—C21	120.9 (8)
C3—C4—C15	121.2 (7)	C19—C20—H20A	119.6
C5—C4—C15	121.9 (7)	C21—C20—H20A	119.6
C6—C5—C4	121.4 (7)	O6—C21—C22	121.4 (6)
C6—C5—O2	119.6 (7)	O6—C21—C20	118.4 (7)

C4—C5—O2	118.9 (6)	C22—C21—C20	120.0 (7)
C7—C6—C5	119.5 (8)	C23—C22—C21	117.1 (6)
С7—С6—Н6А	120.2	C23—C22—C31	123.0 (7)
С5—С6—Н6А	120.2	C21—C22—C31	119.7 (7)
C2—C7—C6	121.6 (7)	C18—C23—C22	123.9 (7)
С2—С7—Н7А	119.2	C18—C23—H23A	118.1
С6—С7—Н7А	119.2	С22—С23—Н23А	118.1
С9—С8—Н8А	109.5	C25—C24—H24A	109.5
С9—С8—Н8В	109.5	C25—C24—H24B	109.5
H8A—C8—H8B	109.5	H24A—C24—H24B	109.5
С9—С8—Н8С	109.5	C25—C24—H24C	109.5
H8A—C8—H8C	109.5	H24A—C24—H24C	109.5
H8B—C8—H8C	109.5	H24B—C24—H24C	109.5
C10—C9—C14	118.3 (6)	C26—C25—C30	117.7 (7)
C10—C9—C8	119.6 (6)	C26—C25—C24	119.2 (7)
C14—C9—C8	122.1 (6)	C30—C25—C24	123.1 (7)
С11—С10—С9	120.9 (7)	C27—C26—C25	122.2 (6)
C11—C10—H10A	119.6	C27—C26—H26A	118.9
C9—C10—H10A	119.6	C25—C26—H26A	118.9
C12—C11—C10	119.3 (8)	C26—C27—C28	117.6 (8)
C12—C11—H11A	120.4	C26—C27—C31	122.1 (7)
C10—C11—H11A	120.4	C28—C27—C31	120.0 (7)
C11—C12—C13	122.8 (8)	C29—C28—C27	121.4 (8)
C11—C12—O3	118.3 (7)	C29—C28—O5	117.7 (7)
C13—C12—O3	118.6 (7)	C27—C28—O5	120.8 (7)
C14—C13—C12	114.8 (7)	C30—C29—C28	119.3 (8)
C14—C13—C15	123.3 (7)	С30—С29—Н29А	120.3
C12—C13—C15	121.8 (7)	С28—С29—Н29А	120.3
C9—C14—C13	123.8 (6)	C29—C30—C25	121.6 (8)
C9—C14—H14A	118.1	С29—С30—Н30А	119.2
C13—C14—H14A	118.1	С25—С30—Н30А	119.2
C13—C15—C16	114.9 (6)	C22—C31—C27	109.3 (5)
C13—C15—C4	108.5 (5)	C22—C31—C32	114.8 (6)
C16—C15—C4	112.9 (6)	C27—C31—C32	113.1 (6)
C13—C15—H15A	106.7	С22—С31—Н31А	106.4
C16—C15—H15A	106.7	C27—C31—H31A	106.4
C4—C15—H15A	106.7	С32—С31—Н31А	106.4
C15—C16—H16A	109.5	C31—C32—H32A	109.5
C15—C16—H16B	109.5	C31—C32—H32B	109.5
Н16А—С16—Н16В	109.5	H32A—C32—H32B	109.5
C15—C16—H16C	109.5	C31—C32—H32C	109.5
H16A—C16—H16C	109.5	H32A—C32—H32C	109.5
H16B—C16—H16C	109.5	H32B—C32—H32C	109.5
01—S1—O2—C5	-29.3 (6)	O4—S2—O5—C28	28.1 (7)
O3—S1—O2—C5	85.6 (6)	O6—S2—O5—C28	-84.2 (6)
O1—S1—O3—C12	27.4 (7)	O4—S2—O6—C21	-31.6 (6)
O2—S1—O3—C12	-86.3 (6)	O5—S2—O6—C21	84.0 (5)
C7—C2—C3—C4	-2.7 (11)	C23—C18—C19—C20	4.6 (10)
C1—C2—C3—C4	178.1 (7)	C17—C18—C19—C20	-179.3 (7)

C2—C3—C4—C5	3.1 (10)	C18—C19—C20—C21	-5.6 (11)
C2—C3—C4—C15	174.6 (6)	S2—O6—C21—C22	-89.2 (8)
C3—C4—C5—C6	-2.9 (11)	S2	96.0 (8)
C15—C4—C5—C6	-174.4 (7)	C19—C20—C21—O6	178.9 (7)
C3—C4—C5—O2	-179.2 (7)	C19—C20—C21—C22	4.0 (12)
C15—C4—C5—O2	9.4 (10)	O6—C21—C22—C23	-176.1 (7)
S1—O2—C5—C6	93.5 (8)	C20-C21-C22-C23	-1.4 (11)
S1—O2—C5—C4	-90.2 (7)	O6-C21-C22-C31	8.1 (11)
C4—C5—C6—C7	2.4 (11)	C20-C21-C22-C31	-177.2 (7)
O2—C5—C6—C7	178.6 (6)	C19—C18—C23—C22	-2.1 (11)
C3—C2—C7—C6	2.0 (11)	C17—C18—C23—C22	-178.2 (7)
C1—C2—C7—C6	-178.8 (7)	C21—C22—C23—C18	0.5 (11)
C5—C6—C7—C2	-1.9 (12)	C31—C22—C23—C18	176.2 (7)
C14—C9—C10—C11	-0.6 (10)	C30—C25—C26—C27	0.4 (10)
C8—C9—C10—C11	177.9 (7)	C24—C25—C26—C27	-178.5 (6)
C9-C10-C11-C12	1.7 (10)	C25—C26—C27—C28	-0.5 (10)
C10-C11-C12-C13	-0.9 (10)	C25—C26—C27—C31	-175.5 (6)
C10-C11-C12-O3	-175.3 (6)	C26—C27—C28—C29	-1.1 (10)
S1—O3—C12—C11	-96.8 (7)	C31—C27—C28—C29	174.0 (6)
S1—O3—C12—C13	88.6 (7)	C26—C27—C28—O5	175.2 (6)
C11-C12-C13-C14	-1.0 (9)	C31—C27—C28—O5	-9.6 (10)
O3-C12-C13-C14	173.4 (5)	S2—O5—C28—C29	-94.4 (7)
C11—C12—C13—C15	178.1 (6)	S2—O5—C28—C27	89.1 (7)
O3—C12—C13—C15	-7.6 (9)	C27—C28—C29—C30	2.8 (10)
C10-C9-C14-C13	-1.5 (10)	O5-C28-C29-C30	-173.7 (6)
C8—C9—C14—C13	-180.0 (6)	C28—C29—C30—C25	-2.8 (10)
C12—C13—C14—C9	2.2 (9)	C26—C25—C30—C29	1.3 (10)
C15—C13—C14—C9	-176.8 (6)	C24—C25—C30—C29	-179.8 (7)
C14-C13-C15-C16	-32.3 (8)	C23—C22—C31—C27	-88.7 (9)
C12-C13-C15-C16	148.7 (6)	C21—C22—C31—C27	86.8 (8)
C14—C13—C15—C4	95.1 (7)	C23—C22—C31—C32	39.5 (10)
C12—C13—C15—C4	-83.8 (8)	C21—C22—C31—C32	-145.0 (6)
C3—C4—C15—C13	-85.1 (8)	C26—C27—C31—C22	90.0 (8)
C5-C4-C15-C13	85.9 (8)	C28—C27—C31—C22	-84.9 (8)
C3—C4—C15—C16	43.4 (9)	C26—C27—C31—C32	-39.2 (9)
C5—C4—C15—C16	-145.6 (6)	C28—C27—C31—C32	145.9 (6)

Fig. 1